Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1.

نویسندگان

  • L I Bruijn
  • M K Houseweart
  • S Kato
  • K L Anderson
  • S D Anderson
  • E Ohama
  • A G Reaume
  • R W Scott
  • D W Cleveland
چکیده

Analysis of transgenic mice expressing familial amyotrophic lateral sclerosis (ALS)-linked mutations in the enzyme superoxide dismutase (SOD1) have shown that motor neuron death arises from a mutant-mediated toxic property or properties. In testing the disease mechanism, both elimination and elevation of wild-type SOD1 were found to have no effect on mutant-mediated disease, which demonstrates that the use of SOD mimetics is unlikely to be an effective therapy and raises the question of whether toxicity arises from superoxide-mediated oxidative stress. Aggregates containing SOD1 were common to disease caused by different mutants, implying that coaggregation of an unidentified essential component or components or aberrant catalysis by misfolded mutants underlies a portion of mutant-mediated toxicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of SOD1 Subcellular Localization by Transfection with Wild- or Mutant-type SOD1 in Primary Neuron and Astrocyte Cultures from ALS Mice

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by selective degeneration of motor neurons. Mutant superoxide dismutase 1 (SOD1) is often found as aggregates in the cytoplasm in motor neurons of various mouse models and familial ALS patients. The interplay between motor neurons and astrocytes is crucial for disease outcome, but the mechanisms underlying this p...

متن کامل

Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protein aggregation.

Recent studies provide evidence that wild-type Cu/Zn-superoxide dismutase (SOD1(hWT)) might be an important factor in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). In order to investigate its functional role in the pathogenesis of ALS, we designed fusion proteins of two SOD1 monomers linked by a polypeptide. We demonstrated that wild-type-like mutants, but not SOD1(G85R) homodimers,...

متن کامل

Oxidative Modifications of Cu, Zn-Superoxide Dismutase (SOD1) – The Relevance to Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is a fatal degenerative disease of motor neurons. About 10 % of ALS cases are affected in a familial trait, a subset of which is caused by the mutation of Cu, Zn-superoxide dismutase (SOD1) gene (Rosen et al., 1993). Since the identification of the gene for familial ALS, research emphasis for ALS has been placed on uncovering the pathogenic mechanism of motor...

متن کامل

Mutant Cu/Zn-Superoxide Dismutase Induced Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis

Mutations in Cu/Zn superoxide dismutase (SOD1) gene are linked to the motor neuron death in familial amyotrophic lateral sclerosis (FALS). More than 100 missense mutations have been described to cause the disease and are distributed throughout the whole 153 amino acid sequence of SOD1 molecule (Valentine et al., 2005; Boillée et al., 2006). Mutant SOD1 molecules can be grouped according to thei...

متن کامل

Inhibition of chaperone activity is a shared property of several Cu,Zn-superoxide dismutase mutants that cause amyotrophic lateral sclerosis.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron degeneration, paralysis, and death. Mutant Cu,Zn-superoxide dismutase (SOD1) causes a subset of ALS by an unidentified toxic property. Increasing evidence suggests that chaperone dysfunction plays a role in motor neuron degeneration in ALS. To investigate the relationship between mutant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 281 5384  شماره 

صفحات  -

تاریخ انتشار 1998